A new theoretical model suggests that quantum entanglement helps prevent the molecules of life from breaking apart.
There was a time, not so long ago, when biologists swore black and blue that quantum mechanics could play no role in the hot, wet systems of life.
Since then, the discipline of quantum biology has emerged as one of the most exciting new fields in science. It’s beginning to look as if quantum effects are crucial in a number of biological processes, such as photosynthesis and avian navigation which we’ve looked at here and here.
Now a group of physicists say that the weird laws of quantum mechanics may be more important for life than biologists could ever have imagined. Their new idea is that DNA is held together by quantum entanglement.
That’s worth picking apart in more detail. Entanglement is the weird quantum process in which a single wavefunction describes two separate objects. When this happens, these objects effectively share the same existence, no matter how far apart they might be.
The question that Elisabeth Rieper at the National University of Singapore and a couple of buddies have asked is what role might entanglement play in DNA. To find out, they’ve constructed a simplified theoretical model […]