The efficient conversion of sunlight into useful energy is one of the challenges which stand in the way of meeting the world’s increasing energy demand in a clean, sustainable way without relying on fossil fuels. Photosynthetic organisms, such as plants and some bacteria, have mastered this process: In less than a couple of trillionths of a second, 95 percent of the sunlight they absorb is whisked away to drive the metabolic reactions that provide them with energy. The efficiency of photovoltaic cells currently on the market is around 20 percent. What hidden mechanism does nature use to transfer energy so efficiently?
Various research groups around the world have shown that this highly efficient energy transport is connected to a quantum-mechanical phenomenon. However, until now, no one had directly observed the possible impacts of such a quantum transport mechanism at work at room temperature.
In an article published in the journal Science, researchers from ICFO- Institute of Photonic Sciences, in collaboration with biochemists from the University of Glasgow, have been able to show for the first time at ambient conditions that the quantum mechanisms of energy transfer make phyotosynthesis more robust in the face of environmental influences. The quantum phenomenon responsible, known as […]