It might seem like something straight from the Star Trek universe, but two new research experiments-one involving a photon and the other involving a super-conducting circuit-have successfully demonstrated the teleportation of quantum bits.

If that sounds like gobbledygook, don’t worry. We got in touch with one of the researchers, physicist Andreas Wallraff, of the Quantum Device Lab at the Swiss Federal Institute of Technology Zurich, to explain how his team and a team based at the University of Tokyo were able to reliably teleport quantum states from one place to another.

People have done this before but it hasn’t necessarily been reliable. The new complementary research, which comes out in Nature today, is reliable-and therefore may have widespread applications in computing and cryptography.

Before we talk about the nitty-gritty part of teleportation, we need to define a few key words. Let’s start with a regular, classical bit of information, which has two possible states: 1 or 0. This binary system is used by basically all computing and computing-based devices. Information can be stored as a 1 or a 0, but not as both simultaneously. (Related: ‘The Physics Behind Schrodinger’s Cat.’)

But a quantum bit of information-called a qubit-can have two values at the same […]

Read the Full Article