Illustration by Dan Page

Picture a plastic bowl. Put a large piece of ice in it—one tall enough that it rises high above the bowl’s rim. Now melt the ice. The bowl will catch most of the water, but not all of it. Since the ice is tall, the bowl will reach full capacity before the block melts completely. With no place else to go, the extra water will spill over the lip and onto the counter.

This is an approximation of how climate scientists have long modeled the collapse of the West Antarctic Ice Sheet (WAIS), an expanse of ice roughly the size of Mexico currently melting in a bowl-shaped stretch of bedrock below sea level. Should the two-million-square-kilometer ice sheet fully collapse, some water would stay in the geological bowl. The rest would flow into the open ocean, where scientists previously estimated it would raise global mean sea level by a little more than three meters within 1,000 years of the collapse. But three meters substantially underestimates the problem, according to a recent study by earth and planetary sciences doctoral students […]

Read the Full Article